Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors.

نویسندگان

  • Shakeel S Dalal
  • Diane M Walters
  • Ivan Lyubimov
  • Juan J de Pablo
  • M D Ediger
چکیده

Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form "stable glasses" with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-atom simulation of molecular orientation in vapor-deposited organic light-emitting diodes

Molecular orientation in vapor-deposited organic semiconductor films is known to improve the optical and electrical efficiencies of organic light-emitting diodes, but atomistic understanding is still incomplete. In this study, using all-atom simulation of vapor deposition, we theoretically investigate how the molecular orientation depends on various factors such as the substrate temperature, mo...

متن کامل

Thermal stability of vapor-deposited stable glasses of an organic semiconductor.

Vapor-deposited organic glasses can show enhanced kinetic stability relative to liquid-cooled glasses. When such stable glasses of model glassformers are annealed above the glass transition temperature Tg, they lose their thermal stability and transform into the supercooled liquid via constant velocity propagating fronts. In this work, we show that vapor-deposited glasses of an organic semicond...

متن کامل

Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors.

Organic field-effect transistor (OFETs) are fabricated using thin, vapor-deposited films of both the gate dielectric (vapor-deposited self-assembled nanodielectric, v-SAND) and the organic semiconductor. The nanoscopic self-assembled gate dielectrics are structurally organized via molecular precursor hydrogen-bonding interactions, followed by planarization with a vapor-deposited inorganic SiO(x...

متن کامل

Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films

Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these "stable glasses" are grown. In this work, we present a ...

متن کامل

Preparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon

In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 14  شماره 

صفحات  -

تاریخ انتشار 2015